
Abstract— In this work, a novel approach is proposed in 

order to capture relevant features related to the structure and 

organization of the functional brain networks estimated in the 

time-frequency domain. To achieve this, we used a cascade of 

computational tools able to estimate first the electrical activity 

of the cortical surface by using high-resolution EEG 

techniques. Then, on the cortical signals from different regions 

of interest, we estimated the time-varying functional 

connectivity patterns by means of the adaptive Partial Directed 

Coherence. Such time-varying connectivity estimation returns 

a series of causality patterns evolving during the examined 

task, which can be summarized and interpreted with the aid of 

mathematical indexes based on the graph theory. The 

combination of all these methods is demonstrated on a set of 

high-resolution EEG data recorded from a healthy subject 

performing a simple foot movement.  

I. INTRODUCTION

HE importance of objectively comprehending the 

relationships among the differently specialized brain 

structures is assuming a relevant role in the Neuroscience 

[1]. Several methods able to estimate functional connections 

among such structures have been proposed and discussed in 

literature [2],[3]. Among these, the use of multivariate auto-

regressive (MVAR) models for the estimation of cortical 

connectivity is of particular interest since they characterize 

at the same time direction and spectral properties of the 

interaction between different brain signals and require only 

one model to be estimated from all the time series [4]. 

However, classical utilize of these methods requires the 

stationarity of the signals and transient pathways of 

information transfer could remain hidden because the 
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estimation of a unique model on the entire time interval. To 

overcome this limitation, different algorithms for the 

estimation of MVAR with time dependent coefficients were 

recently developed [5]. Anyway, the interpretation of such 

functional brain connectivity patterns remains an open issue, 

because often-estimated functional cerebral networks have a 

relative great size and complex structure.  Recently, it was 

realized that functional connectivity networks estimated 

from EEG or MEG recordings can be analyzed with tools 

that have been already generated for the treatment of graphs 

as mathematical objects [6]. Anyway, empirical results 

demonstrate that purely topological models, which neglect 

the weight of connections, are inadequate to explain the rich 

and complex properties observed in real systems [8]. 

According to this observation, emergent models proposed 

for weighted and directed graphs have been employed in this 

study to naturally achieve the available broad scale 

distributions and topology–weight correlations among the 

units.  

II. METHODS

A.  Time-Varying Connectivity 

A time-varying formulation of Partial Directed Coherence 

(PDC) based on an adaptive MVAR (AMVAR) model is 

employed in this study. Time dependent parameter matrices 

were estimated by means of the recursive least squares 

(RLS) algorithm with forgetting factor, as described in [5], 

[9]. Time-varying PDC allows for the observation of 

transient influences among different cerebral regions during 

the execution of a task and provides the evolving patterns of 

connectivity in particular frequency contents. 

B.  Weighted Graph Analysis 

1) Strength. This quantity has to be split into in-strength 

sin and out-strength sout, when directed relationships are 

being considered. The strengths integrate the information on 

the number (degrees) with the weights of the links, thus 

representing the total amount of intensity outgoing or 

incident into a node. 

3) Efficiency. The efficiency is a quantity recently 

introduced in [10] to measure how efficiently the nodes of 

the network communicate if they exchange information in 

parallel. At global scale, it measures the overall 

communication among the units while at local scale it 

represents the tendency to form clusters that mutually share 

functional connections. 
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III. RESULTS

In this work, we would like to show the suitability of the 

time-varying graph approach illustrating the cortical 

dynamics obtained from a representative healthy subject. He 

was asked to perform a dorsal flexion of his right foot.  

A. Strength.  

The analysis of the “strenght” indexes put in evidence a 

particular subset of regions, which receives a growing 

amount of information as time elapses. Both the cingulate 

motor areas (CM_L amd CM_R), altogether with the contro-

lateral supplementary motor area (SMp_L) and contro-

lateral primary motor area (MF_L) form the strongest 

nucleus for the whole incoming information. Instead, the 

outgoing information places itself more uniformly among 

the cortical regions during time advancing.  

B. Efficiency.  

 The study of the efficiency indexes showed how the 

brain network changes its structure and organization 

according to the different functional necessities during the 

performance of a simple movement. At one second from the 

onset, cortical regions of interest show low levels of global 

and local efficiencies leading to a weak communication 

pattern. As time gets near the execution of the movement, 

local properties arise and local efficiency increases steering 

the network towards an ordered and well organized 

configuration. In proximity of the execution (about 200 ms 

before the onset), global and local efficiency reach their 

highest value and the cortical network assumes a clear 

Small-World (SW) [7] configuration which interpolate 

between the characteristics of a regular lattice and a random 

graph. After the onset, the cortical network seems to return 

to its initial state, showing mostly low values of global and 

local efficiency and therefore lower level of communication. 

IV. DISCUSSION

The extraction of relevant features from complex 

evolving graphs allowed for the generation and testing of 

particular hypotheses on the physiologic nature of the 

functional networks estimated from high-resolution EEG 

recordings. Moreover, the time-varying adaptation of such 

mathematical indexes is particularly suitable to capture the 

dynamics of the cortical networks and represents a 

promising tool to be integrated in several on-line 

procedures, ranging from clinical to brain-computer 

interface applications. 
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