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Abstract 

In this paper we describe a new finite-difference 

method (FDM) EEG forward problem formulation 

which accounts for anisotropy of the various head 

tissues in the volume conductor model of the head. Our 

proposal, being based on FDM, derives the head 

model directly from patient’s specific clinical images. 

We present here the numerical FD formulation and the 

comparison of the proposed method with a previously 

developed FD formulation with respect to known 

analytical results, using a multi-shell anisotropic head 

model with skull anisotropy. Furthermore, we analyzed 

also different numerical grid refinement and EEG 

source characteristics. The comparative analysis 

performed shows the validity of the proposed method.  

1. Introduction 

The computation of the electric potential generated 

by current density sources in the brain is the so-called 

EEG forward problem [1]. To get an accurate solution 

it is necessary to correctly model the shape of the head 

and tissues electrical conductivity [1], even in the 

presence of the anisotropy which characterizes tissues 

as white matter or the skull and is described by a 

conductivity tensor. Information about tissue 

anisotropy can be extracted from the Diffusion Tensor 

(DT-MRI) images and passed to the EEG forward 

problem formulation. Finite Difference (FD) models 

allow an image-based incorporation of such tissue 

complexities [2]. A FD formulation able to account for 

conductivity anisotropy as straightforward as possible 

from imaging information is therefore desirable. We 

propose an original FD problem formulation, valid for 

generally inhomogeneous and anisotropic structures, 

which is conceived to meet these needs [2]. While the 

Saleheen and Kwong’s formulation [3] differs from 

standard FD formulations, since voxels are mapped as 

mesh elements and mesh nodes correspond to voxels’ 

vertexes, the formulation we propose considers the 

voxels’ centre as the mesh´s nodes and the 

computational points set in the voxels’ center with a 

one-to-one correspondence between nodes and voxels, 

avoiding preliminary pre-processing due to the specific 

geometry of the adopted mesh. To test the validity of 

this new approach, simulation results of the proposed 

formulation are compared with an analytical forward 

problem solution for a 4-shell spherical head model 

with anisotropic skull [4], in comparison with  the FD 

Saleheen and Kwong’s formulation [3]. 

2. The FD formulation 

Problem formulation starts from Poisson’s equation 

·( u)= ·J, with u the electric potential,  the 3-D 

conductivity tensor and J the current density. After 

expanding  in the corresponding derivatives along x,

y and z directions, the Taylor series expansions around 

a central node (node 0 in Fig. 1) up to the 2nd order can 

then be developed for the products of the 

conductivities and potentials ( u) at the neighboring 

nodes (1-18), generating a system of 18 equations. 

Solving these equations, the 1st and 2nd order partial 

derivatives of u at node 0 along x, y, and z can be 

expressed in terms of u and at all the nodes (0-18). 

The expression of u at node 0 in terms of u and at the 

surrounding nodes (1-18) is then finally obtained, 

containing the derivative of  associated with the node 

corresponding to that voxel. Considering the 

conductivity to be constant over a voxel and 

formulating the conductivity of the general term i,j(k)

taken as the average of the term i,j at node k and node 

0, with i=x,y,z, j=x,y,z and k=1, ...,18, a sort of smooth 

conductivity transition between the mesh elements can 

be achieved, guaranteeing also accurate results and 

increasing the speed of convergence. The final FD 

formulation is reported in eq. 1 as: 
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Figure 1. Indexes used in formulas for central node of the FDM 

computation and the surrounding neighboring nodes. 
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Indexes [.] refer to the voxel to which tensor entry 

refers. This formulation presents a leading error of h2

with a linear system matrix symmetric, semi-definite 

positive and sparse (19 non-zero sub-diagonals). 

3. Simulations and results 

Results of forward problem computations 

performed by means of Saleheen and Kwong’s 

formulation [3] (Method 1, named M1) and with the 

proposed FD formulation (Method 2, M2) are 

presented in Table 1. Simulations were performed with 

a 4-shell anisotropic concentric-spheres head model, 

composed by scalp, skull, cerebrospinal fluid and brain 

compartments with radii of 9.2, 8.7, 8.2 and 8 cm 

respectively. Adopted conductivities were: 0.33 S/m 

for scalp and brain, 1.0 S/m for CSF, 0.0047 and 

0.0474 S/m for radial and tangential skull 

conductivities. Four dipole sources have been 

simulated, placed at 1.5, 3, 4.5 and 6 cm of distance 

from model center, radially or tangentially oriented. 

Potentials computed on the outer model’s surface by 

Methods 1 and 2 have been compared with the 

analytical solution [4] in the same test condition by 

means of the correlation coefficient (CC), defined as:   
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where 
iu  and 

iû  are the potentials at node i, in the 

analytical and in the FDM solution respectively, while 

u  and û  represent the mean values. CC close to 1 

means a good fit of analytical and numerical solutions. 

Three different meshes have been tested, with 403, 803,

and 1003 nodes and inter-node distances of 5, 2.5 and 2 

mm respectively.  

Table 1. CC values for comparison between Method 1 (M1) and 

Method 2 (M2) for the three different meshes (test sources: P: 

position [cm]; O: orientation; R: radial; T: tangential).  

Source Mesh size 

403 803 1003

P O
M1 M2 M1 M2 M1 M2 

1.5 R 0.993 0.991 0.998 0.997 0.999 0.999 

3.0 R 0.971 0.965 0.994 0.988 0.997 0.993 

4.5 R 0.929 0.903 0.987 0.970 0.993 0.984 

6.0 R 0.855 0.781 0.976 0.941 0.987 0.968 

1.5 T 0.995 0.995 0.997 0.997 0.998 0.999 

3.0 T 0.980 0.980 0.991 0.990 0.994 0.993 

4.5 T 0.949 0.944 0.982 0.973 0.989 0.985 

6.0 T 0.887 0.868 0.972 0.945 0.983 0.968 

Errors in scale, measured using the MAG index [3], 

show similar results with M1 and M2. CC shows, in all 

the situations, a value close to 1 confirming the 

validity of M2 in comparison with M1. Even if M1 

generally provides values of CC slightly higher, M2 

implies, for the same model, building a smaller model 

mesh (N3 elements instead of (N+1)3) and hence a 

smaller linear system to be solved. This gain may be 

small if system is large, but the discretization approach 

of M2 allows a simpler implementation of the 

algorithm as it provides a one-to-one correspondence 

between voxels and mesh nodes. 
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