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Abstract 

Mathematical expressions of reconstructions of 

conductivity and permittivity using measured current 

density are described. The current density is measured 

electromagnetically. By placing a pickup coil close to 

the target, these electric property reconstructions can 

be obtained. The reconstructions can be performed 

with respect to a target in situ as well, e.g., nerve 

circuits and various tissues (brain, heart, muscle and 

so forth). 

1. Introduction 

For living in vivo tissues, we have been 

developing noninvasive electromagnetic techniques for 

reconstructing the internal distributions of conductivity 

and permittivity. In our one approach [1], on the basis 

of the magnetic vector measurements performed in the 

vicinity of the target, the internal current density vector 

distribution is reconstructed (an inverse problem of 

Biot-Severt’s law [2]), subsequently from which such 

tissue electric properties are reconstructed. In ref. [1], a 

steady case is dealt with, whereas in this report, a 

dynamic case is dealt with. That is, in ref. [1], only 

conductivity is reconstructed, whereas in this report, 

both conductivity and permittivity are our targets. 

For conductivity reconstruction, for instance, in 

ref. [3], paired excitation and detection electrodes are 

used; in ref. [4], paired excitation coils and detection 

electrodes are used; and in ref. [5], paired excitation 

and detection coils are used. Permittivity reconstruction 

is also reported in ref. [6]. In all these reconstructions, 

a sensitivity theorem [7] is used and then, the 

reconstruction problems fall in a nonlinear-integration-

type inverse problem. 

However, the inverse problems in our approach 

belong to a linear-differential-type problem [8]. Our 

approach enables reconstructions in situ. That is, a 

target in which current normally exists can also be dealt 

with only by placing pickup coil close to the target. 

Thus, our techniques enable us to evaluate the electric 

conductive paths of normal and cultured nerves as well 

as tissue electric properties (brain, heart, muscle and so 

forth). Occasionally such properties also express 

functions that are determined by physiological or 

pathological states. Nondestructive evaluations of 

structures (e.g., electric circuit) and materials can also 

be performed. 

Thus far, we have reported for a two-dimensional 

(2D) medium a reconstruction method of a 2D 

conductivity distribution using a 2D distribution of a 

2D current density vector [1]. To enable such a 

reconstruction on a 3D target, a measurement of a 3D 

distribution of either full three or two current density 

vector components must be realized [1]. However, as is 

well known, a 3D current vector cannot be evaluated 

from a full set of 3D magnetic vector components [2]. 

Thus, in ref. [3], we proposed a novel approach in that 

for a 3D target only two tangential components of a 3D 

current vector are reconstructed, i.e., a new inverse 

problem of Biot-Severt’s law. This was also motivated 

by the fact that the normal current density component 

does not contribute to the magnetic vector outside of 

the body when the surface of the target body is widely 

flat or spherical. Moreover, we also introduced a lifting 

procedure for pickup coils to realize a measurement of 

a 3D distribution of a 3D or tangential 2D magnetic 

vector. 

2. Mathematical expressions 

A. Review of conductivity reconstruction 

In a steady current field, if no current source exists 

in a region of interest (ROI), the constitutive equation 

and governing equation are respectively, 

EJ σ=                 (1) 

0E =×∇ ,           (2) 

where J and E denote respectively current density and 

electric field, and σ  denotes conductivity. By 

eliminating E by substituting (1) into (2), simultaneous 
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first order partial differential equations (PDEs) 

regarding σ  are obtained. 

0JJ =×σ∇−×∇σ      (3) 

The PDEs can also be expressed as 

0JJ =×σ∇−×∇ )(ln .     (4) 

The spatial inhomogeneous coefficients are derived 

from measured current densities in the ROI. Numerical 

solutions are specifically described in refs. [9,10]. As 

mentioned above, measurement of only two current 

density components also enables the reconstruction by 

using reference conductivities in the ROI. 

When realizing a reference point in the ROI [9], if 

the reference conductivity is known, the absolute 

conductivity distribution can be reconstructed, whereas 

if not known, by assigning an arbitrary value (e.g., unit) 

at an arbitrary point in the ROI, the relative 

conductivity distribution can be reconstructed. In this 

case, however, measurements of more than two 

independent current density distributions generated by 

using different positions of current sources injected or 

induced or using some attachment are required. When 

realizing a reference region (i.e., not a point) in the 

ROI such that the reference region widely extends in 

the direction of the generated current flow [10], 

measurement of only one current density distribution is 

required. By depicting the characteristic curves of the 

PDEs (i.e., using measured J), we can obtain such a 

meaningful information about the proper configurations 

of current sources and references. 

B. Conductivity and permittivity reconstruction 

In a dynamic current field, if no current source 

exists in an ROI, the constitutive equation and 

governing equation are respectively, 

)(
t

EEJ ε
∂
∂+σ=             (5) 

)(
t

B-E
∂
∂=×∇ ,              (6) 

where B denotes a magnetic vector and ε denotes 

permittivity. By eliminating E, simultaneous first-order 

PDEs regarding σ  and ε  are obtained. 

)(
t

])jCA[( BJ
∂
∂−=−×∇

where ],)f2(/[A 222 επ+σσ=
])f2(/[)f2(C 222 επ+σεπ= ,      (7) 

where j denotes an imaginary unit, both J and B denote, 

in an analytic form, current density vector and 

magnetic vector, and f denotes an instantaneous 

frequency of J. The magnetic vector B can be obtained 

by Biot-Severt’s law using the measured J. As is well 

known, the permeability of tissue is almost the same as 

that of air. By solving eq. (7) using references σ  and 

ε , the distributions of σ  and ε  can be reconstructed. 

The references should be realized as a reference region 

like that of conductivity in a steady case. If such a 

proper configuration cannot be realized, measurements 

of more than two independent field signals J generated 

at different times or by using different positions of 

current sources or some attachment are required. 

When J is simply sinusoidal, a single frequency is 

used as f in eq. (7) instead of the instantaneous 

frequency. Occasionally, only an arbitrary frequency 

component in signals may also be used approximately. 

By these or signal analyses of σ  and ε , frequency 

variances may also be evaluated. 
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